Medium
Given a reference of a node in a connected undirected graph.
Return a deep copy (clone) of the graph.
Each node in the graph contains a value (int
) and a list (List[Node]
) of its neighbors.
class Node { public int val; public List
Test case format:
For simplicity, each node’s value is the same as the node’s index (1-indexed). For example, the first node with val == 1
, the second node with val == 2
, and so on. The graph is represented in the test case using an adjacency list.
An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.
The given node will always be the first node with val = 1
. You must return the copy of the given node as a reference to the cloned graph.
Example 1:
Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation:
There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
Example 2:
Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.
Example 3:
Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.
Example 4:
Input: adjList = [[2],[1]]
Output: [[2],[1]]
Constraints:
[0, 100]
.1 <= Node.val <= 100
Node.val
is unique for each node.from typing import Dict, List, Optional
class Node:
def __init__(self, val=0, neighbors=None):
self.val = val
self.neighbors = neighbors if neighbors is not None else []
class Solution:
def cloneGraph(self, node: Optional[Node]) -> Optional[Node]:
return self._cloneGraph(node, {})
def _cloneGraph(self, node: Optional[Node], processed_nodes: Dict[Node, Node]) -> Optional[Node]:
if node is None:
return None
elif node in processed_nodes:
return processed_nodes[node]
new_node = Node()
processed_nodes[node] = new_node
new_node.val = node.val
new_node.neighbors = []
for neighbor in node.neighbors:
cloned_neighbor = self._cloneGraph(neighbor, processed_nodes)
if cloned_neighbor is not None:
new_node.neighbors.append(cloned_neighbor)
return new_node