Medium
Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray of nums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Example 1:
Input: nums = [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3]
Output: -2
Explanation: Subarray [-2] has maximum sum -2.
Constraints:
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
from typing import List
class Solution:
def maxSubarraySumCircular(self, nums: List[int]) -> int:
if len(nums) == 1:
return nums[0]
def kadane(nums: List[int], sign: int) -> int:
curr_sum = float('-inf')
max_sum = float('-inf')
for num in nums:
curr_sum = sign * num + max(curr_sum, 0)
max_sum = max(max_sum, curr_sum)
return max_sum
sum_of_array = sum(nums)
max_sum_subarray = kadane(nums, 1)
min_sum_subarray = kadane(nums, -1) * -1
if sum_of_array == min_sum_subarray:
return max_sum_subarray
else:
return max(max_sum_subarray, sum_of_array - min_sum_subarray)